
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015 pp. 355-361
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Agent Based Storage Compaction and BST Load
Balancing Algorithm for Multicore Architecture

G. Muneeswari1 and J. Frank Vijay2
1Department of Information Technology SSN College of Engineering
2Department of Information Technology KCG College of Technology

E-mail: 1muneeswarig@ssn.edu.in, 2hodit@kcgcollege.com

Abstract— In a Multicore architecture, besides enormous
performance enhancement, lot of challenges are injected on the
operating system storage compaction and load balancing point of
view. The main objective of agent based system is to invent some
methodologies that make the developer to build complex systems that
can be used to solve sophisticated problems. In this paper, we
proposed the time based storage compaction algorithm for multicore
architecture. Another research issue in multicore system is the
development of effective techniques for distributing workload on
multiple processors. To improve the load balancing a new BST based
load balancing technique has been proposed. We actually simulated
this algorithm in the linux kernel 2.6.11 and the results show that it
improves the speedup and performance of the multicore processors to
20%.

Keywords: Multicore; garbage collectors; storage compaction;
inductive learning; BST; Load balancing

1. INTRODUCTION

Multicore architectures, which integrate several processors on
a single chip, are being widely accepted as a solution to serial
execution problems currently limiting single processor system
designs. In most proposed multicore architectures (fig.1),
different cores share the global common memory. High
performance on multicore processor requires that storage
compaction has to be effectively reinvented.

Traditional storage compaction algorithms focuses on
collecting unwanted files (garbage) on a single processor or
might be implemented for distributed systems. The similar
kind of storage compaction algorithms can be extended for
multicore systems thus increasing the space in the memory
and ultimately improving the cpu performance. Multi-core
processors do, however, present a new challenge that will need
to be met if they are to live up to expectations. Since multiple
cores are most efficiently used (and cost effective) when each
is executing one process, simultaneously many processes can
be kept in the memory for execution. As the number of cores
per processor and the number of threaded applications
increase, the performance of more and more applications will
be limited by the processor’s memory availability. Storage
compaction in today’s operating systems have the primary

goal of collecting all the unwanted files, delete them and thus
keeping all cores busy executing some runnable process. One
technique that mitigates the memory limitation is to
intelligently collect the garbage files and make the memory
free with the help of software approach like agent based
system, which incorporates inductive learning.

Fig. 1: Multicore Architecture

The main goal is to allocate the processes to processors to
maximize throughput, maintain stability, resource utilization
and should be fault tolerant in nature. Load balance is critical
for performance in large multicore systems. If there is a load
imbalance on multiple processors then it can cause hundreds
and thousands of cores to be kept in idle state. Improving load
balance requires a detailed understanding of the amount of the
load per processor and an insight into the arrival rate of the
tasks must be known to the scheduler. Most of the modern
load balance mechanisms are often integrated into applications
and make implicit assumptions about the load.

The three load balancing steps are:
 Evaluate the imbalance;
 Decide how to balance if needed;
 Reallocate work to correct the imbalance.

Pr1 Pr2 Prn

LM1 LM2 LMn

Global Shared Memory

G. Muneeswari and J. Frank Vijay

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

356

To address the first two requirements with a data structure
called as PSIB and derive complete information with a help of
Binary Search Tree (BST) and the load is balanced based on
the tree construction.

The Paper is organized as follows. Section II reviews related
work. In Section III, we introduce the garbage collector
(storage compaction) concepts. This describes local garbage
collector implementation and BST load balancing algorithm
implementation. In section IV, We discuss the evaluation and
results. The section V presents conclusion. Finally, section VI
describes future enhancements with multicore.

2. BACKGROUND AND RELATED WORK

Bacon and Rajan [1] discovered similarities between forward-
tracing and reference-counting uniprocessor collectors, noting
that optimized versions of each collector behave similarly and
have similar performance traits because they seem to be
composed of the same underlying tracing actions. Beltway [2]
composed a unique mechanism for dividing the heap by object
age and performing incremental collection with high
performance. In [3] uniprocessor collectors are extended to a
distributed context.The train algorithm [4] has been
instantiated with PMOS and distributed heaps, which is
termed to be DPMOS mechanism. The Doomsday distributed
termination [5] detection protocol also used for the efficient
applications.

Lowry [6] discusses the safe and complete distributed garbage
collection with the train algorithm. Moreau [7] presents a
formal proof of reference listing by introducing a graphical
representation of the algorithm’s state space and permitted
transitions therein. In [8], The pseudo root approach of the
distributed garbage collection for mobile actor systems is
explained. Munro [9] describes the selection policies using the
PMOS garbage collector. Norcross [10] describes the
construction of train based collectors by the composition of
Distributed Termination Detection Algorithm (DTDA) and
arbitrary local collector.

Zigman [11] discusses the creation of compound collectors by
composing multiple collectors to operate on subgraphs. Past
research into partition selection [12] has focused on heuristics
aimed at reclaiming acyclic data structures by selecting
partitions that contain objects that are the targets of erased
pointers.Herlihy and Moss [13] presented the first algorithm
for lock free garbage collection in a realistic model. The
algorithm assumes that processes synchronize by applying
read, write and compare & swap operations to shared memory.

3. STORAGE COMPACTION AND BST LOAD
BALANCING

Garbage Collectors

The data items or files which are allocated or created, but not
being used for long time, will stay in memory, wasting some

useful space of the memory. These waste data items or files
which are called garbage can be detected and can be freed
from the memory space, can be used for some other useful
data items or files. The entire idea forms the basis for the
storage compaction.

Automatic storage management in high level languages saves
the programmer from the time consuming and error prone task
of manually managing the allocation and de-allocation of
storage space. Instead, the language runtime systems abstract
over the underlying storage mechanisms by dynamically
allocating space and automatically reclaiming it when it is no
longer used by the application. As with garbage identification,
there are two techniques underlying any garbage reclamation
scheme. Either each live object is copied to some part of the
managed storage space, where it is guaranteed to be
maintained or each garbage object is directly reclaimed and
added to a free list. The way in which space is reclaimed is
directly associated with the mechanisms by which space is
allocated;

The system model (taken from [14]) is defined such that a
computation executes over a number of sites where each site
acts independently, concurrently and asynchronously. The
following assertions are made:

1. Each site has its own local storage and communicates
with other sites only through message passing.

2. Local storage is dynamically allocated and automatically
(safely) reclaimed.

3. Sites appear to operate correctly, without Byzantine
behavior.

4. There is no bound on the relative rates of computation of
the sites.

5. Events at a given site are totally ordered; since messages
are delivered only after being sent, events are partially
ordered in the system as a whole.

6. Messages are delivered in-order, without omission or
corruption.

This concept of collecting the garbage is the motivation for
designing these local and global garbage collector algorithms.
The local garbage collector at each node collects the files
which are not used for some specific time period and the
global collector checks all the local garbage files and finally
collects the files which are garbage to the whole multicore
environment.

Local Garbage Collector

The local garbage collector consists of two components. They
are local garbage collection algorithm and a local garbage
collection agent. The local garbage collector along with the
processor and memory interface is shown in the fig.2. In a
multicore environment, every processor is sharing the
common global memory and the processors are allocated with
a local garbage collector.

Agent Based Storage Compaction and BST Load Balancing Algorithm for Multicore Architecture 357

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

Fig. 2: Local garbage Collector model

The significant components of this module includes the time
based algorithm and a software agent which is described in
detail in the next sections.

Local Garbage Collection Algorithm

This algorithm is implemented in such a way that the user has
to give the accessing time of the files in each core. The user
can select any number of files that he wants to access. Initially
the flags of all the files are set with initial time of access and
then whenever the file is opened for access, the flag is reset
with the current time. The timer routine implemented in the
local garbage collection algorithm is depicted as follows:

 Int timer()
 { int ct_time,t1m;
 struct time t;
 gettime(&t);
 t1m = t.ti_min;
 ct_time = t1m;
 return(ct_time);
 }
When the algorithm reaches the target time, it will check
which of the files are accessed between the initial and target
time. These files are said to be the non garbage files and they
need not be freed from the memory. The remaining files in the
multicore system are said to be the garbage files, which are
local to the individual processor.

Local Garbage Collection Agent

Once the local garbage collection is completed, the LGCA at
each processor constructs a data structure that implements a
linked list. The individual node in the linked list consists of
the following components:

The name of the file that are not accessed at the corresponding
processor.

The file access bit indicates the processor access. If the file
access bit is 1, it emphasize that the processor has not
accessed the file.

Otherwise the bit is set to 0.

Initially according to the specified algorithm, the local garbage
collection agent constructs the linked list with the starting set
of garbage files. As the global garbage collector finds the
global set of files, the local agent deletes the global garbage
files and modifies all the remaining files access bit as 0. Later,
when again the LGCA is invoked then the local agent searches
for the garbage files in the linked list. If it is available then it
simply makes the file access bit as 1.Finally the entire list is
searched for the file access bit whose entry is 0. Those
identified nodes are no longer been left in the list and has to be
removed.

Fig. 3: Local Garbage Collection Agent Model

In the same way the global garbage collection also performed.

Load Balancing System Model and Algorithm
Construction

If the online temporary task assignment problem is considered,
every process has an arrival and a departure time. The main
objective is to assign the jobs such that the maximum load
over both machines and time is minimized. It is shown that no
polynomial time algorithm can achieve an approximation ratio
below 1:5 for this problem. However, for the case where the
number of machines is getting increased, the load balancing
becomes a complex issue. In online load balancing with
unrelated machines that is specifically in heterogeneous
multicore system it is very difficult to balance the load
because every machine has different processing capability.

Proposed Policies

In multiprocessor system often the load balancing algorithm
preempts jobs and migrate jobs between different processors.
The following Table.1 illustrates the different policies
incorporated in this approach.

Table 1: Policies adopted in agent based load balancing

decision making invocation event driven (application arrival)
transfer policy local information only (threshold)
location policy least loaded
acceptance policy single request no rejection allowed
information policy periodic state dissemination

LGC
algorithm

LGCA1

LGC
algorithm

LGCAn

Global Shared Memory

Pr1 Prn

G. Muneeswari and J. Frank Vijay

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

358

BST Agent based Load balancing Algorithm

This algorithm based on the binary search tree construction for
the multicore architecture.

Step 1: Processor State Information Block (PSIB) is

constructed by the operating system.
Step 2: Threshold time period α is set by the scheduler for

every processor.
Step 3: After α time period the PSIB has been verified by

the load balancing agent.
Step 4: PSIB generally contains the processor ID and the

load on every core.
Step 5: The load balancing agent obtains load of all the

processors from the PSIB.
Step 6: Load balancing agent constructs the BST with

two different data. (i.e.) processor ID and the load
on every core.

Step 7: Now if a new process arrives into the system,
load balancing agent refers the BST for the lightly
loaded node.

Step 8: The left most node in the BST is the lightly
loaded node and hence that will be chosen for
new load allocation.

Algorithm Analysis

With each test that fails to find a match at the probed position,
the search is continued with one or other of the two sub-
intervals, each at most half the size. More precisely, if the
number of items, N, is odd then both sub-intervals will contain
(N - 1)/2 elements, while if N is even then the two sub-
intervals contain N/2 - 1 and N/2 elements. If the original
number of items is N then after the first iteration there will be
at most N/2 items remaining, then at most N/4 items, at most
N/8 items, and so on. In the worst case, when the value is not
in the list, the algorithm must continue iterating until the span
has been made empty; this will have taken at most
log2(N) + 1 iterations, where the notation denotes the
floor function that rounds its argument down to an integer.
This worst case analysis is tight: for any N there exists a query
that takes exactly log2(N) + 1 iterations. When compared to
linear search, whose worst-case behavior is N iterations, it is
seen that binary search is substantially faster as N grows large.
For example, to search a list of one million items takes as
many as one million iterations with linear search, but never
more than twenty iterations with binary search. However, a
binary search can only be performed if the list is in sorted
order.

Average performance

log2(N)-1 is the expected number of probes in an average
successful search, and the worst case is log2(N), just one more
probe. If the list is empty, no probes at all are made. Thus
binary search is a logarithmic algorithm and executes in O
(log(N)) time. In most cases it is considerably faster than a
linear search. It can be implemented using iteration, or

recursion. In some languages it is more elegantly expressed
recursively; however, in some C-based languages tail
recursion is not eliminated and the recursive version requires
more stack space. Binary search can interact poorly with the
memory hierarchy (i.e. caching), because of its random-access
nature. For in-memory searching, if the span to be searched is
small, a linear search may have superior performance simply
because it exhibits better locality of reference. For external
searching, care must be taken or each of the first several
probes will lead to a disk seek. A common method is to
abandon binary searching for linear searching as soon as the
size of the remaining span falls below a small value such as 8
or 16 or even more in recent computers. The exact value
depends entirely on the machine running the algorithm.

It is seen that for multiple searches with a fixed value for N,
then (with the appropriate regard for integer division), the first
iteration always selects the middle element at N/2, and the
second always selects either N/4 or 3N/4, and so on. Thus if
the array's key values are in some sort of slow storage (on a
disc file, in virtual memory, not in the cpu's on-chip memory),
keeping those three keys in a local array for a special
preliminary search will avoid accessing widely separated
memory. Escalating to seven or fifteen such values will allow
further levels at not much cost in storage. On the other hand, if
the searches are frequent and not separated by much other
activity, the computer's various storage control features will
more or less automatically promote frequently accessed
elements into faster storage. When multiple binary searches
are to be performed for the same key in related lists, fractional
cascading can be used to speed up successive searches after
the first one. Even though in theory binary search is almost
always faster than linear search, in practice even on medium
sized arrays (around 100 items or less) it might be infeasible to
ever use binary search. On larger arrays, it only makes sense
to binary search if the number of searches is large enough,
because the initial time to sort the array is comparable to many
linear searches.

4. EVALUATION AND RESULTS

In this section, we present a performance analysis of our
storage compaction algorithm using a gcc compiler and
storage compaction model is taken from linux kernal version
2.6.11. The results show that there is a linear increase in the
cpu performance as we increase the free space results in global
garbage collection. Our algorithm results in allocating more
processes (since we deleted unwanted files) and keeping the
processor busy and reduces the average waiting time of the
processes in the centralized queue. For our simulation we have
taken 10 files as a sample (training set) and tested against 3
cores. In Fig.4, the cpu performance against the free space is
shown for the proposed inductive learning based storage
compaction algorithm. We discovered that the average
performance of the processors in the multicore environment
increases to 20% as we increase the free space in the memory.

Agent Based Storage Compaction and BST Load Balancing Algorithm for Multicore Architecture 359

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

Fig. 4: Storage Compaction Algorithm Performance

The overall performance factors of load balancing policies like
Round Robin, Random, Local Queue, Central Manager,
Threshold and the BST agent approach are listed below in
Table.2 Actually, the process were varied from 5 to 165
keeping the number of cores as constant 25. The performance
factors prove that the load balancing algorithm improves the
performance by 0.35% on an average compared to other
algorithms given with standard workload benchmarks.

Table 2: Performance factors for different

load balancing algorithms

Process
Round

robin perf
Factor

Random
perf Factor

Local
Queue

perf Factor

BST Agent
perf

Factor

5 0.823521 0.509345 0.636455 0.874285
10 0.751399 0.465306 0.54516 0.864447
15 0.710574 0.527285 0.515193 0.825197
20 0.670876 0.487493 0.521377 0.86367
25 0.753355 0.549243 0.635469 0.771012
30 0.748557 0.423462 0.507126 0.82059
35 0.757628 0.496635 0.61542 0.862243
40 0.748389 0.459606 0.54692 0.875972
45 0.777301 0.501497 0.654516 0.825484
50 0.756046 0.462384 0.567489 0.842653
55 0.749089 0.511923 0.586223 0.873321
60 0.763368 0.489332 0.618097 0.843654
65 0.732016 0.574167 0.574165 0.865062
70 0.792815 0.390873 0.585458 0.870745

The Comparative analysis of Round Robin, Random, Local
Queue, Central Manager, Threshold policies and the BST
Agent approach are listed below in Table 6.4. From the
analysis it is observed that the average waiting time and

average turnaround time are much lesser (0.2%) compared to
other load balancing policies. The performance of various load
balancing algorithms is measured by the following parameters.

 Overload Rejection
If Load Balancing is not possible additional overload rejection
measures are needed. When the overload situation ends then
first the overload rejection measures are stopped. After a short
guard period Load Balancing is also closed down.

 Fault Tolerant
This parameter gives that algorithm is able to tolerate tortuous
faults or not. It enables an algorithm to continue operating
properly in the event of some failure. If the performance of
algorithm decreases, the decrease is proportional to the
seriousness of the failure, even a small failure can cause total
failure in load balancing.

 Forecasting Accuracy
Forecasting is the degree of conformity of calculated results to
its actual value that will be generated after execution. The
static algorithms provide more accuracy than of dynamic
algorithms as in former most assumptions are made during
compile time and in later this is done during execution.

 Stability
Stability can be characterized in terms of the delays in the
transfer of information between processors and the gains in the
load balancing algorithm by obtaining faster performance by a
specified amount of time.

 Centralized or Decentralized
Centralized schemes store global information at a designated
node. All sender or receiver nodes access the designated node
to calculate the amount of load-transfers and also to check that
tasks are to be sent to or received from. In a distributed load
balancing, every node executes balancing separately. The idle
nodes can obtain load during runtime from a shared global
queue of processes.

 Nature of Load Balancing Algorithms
Static load balancing assigns load to nodes probabilistically or
deterministically without consideration of runtime events. It is
generally impossible to make predictions of arrival times of
loads and processing times required for future loads. On the
other hand, in a dynamic load balancing the load distribution
is made during run-time based on current processing rates and
network condition. A DLB policy can use either local or
global information.

 Cooperative
This parameter gives that whether processors share
information between them in making the process allocation
decision other are not during execution. What this parameter
defines is the extent of independence that each processor has
in concluding that how should it can use its own resources.

0

20

40

60

80

100

120

1 6

storage compaction algorithm performance

CPU Performance (in percentage)

Free space(in Mbytes)

G. Muneeswari and J. Frank Vijay

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

360

Table 3: Parameters for different load balancing algorithms

Parameters

Roun
d

Robi
n

Rando
m

Local
Queu

e

BST
Agen

t

Central
Manag

er

Thresho
ld

Context
switch
overhead

No

No Yes No No No

Scheduling
Ratio

More More Less More More More

Average
Waiting Time

Less More Less Less More Less

Average
Turnaround
Time

Less More Less Less More Less

 Accuracy More More Less More More More
Delay Large Large Small Smal

l
Large Large

Centralized/
Decentralized

D D D C C D

Dynamic/Stati
c

S S DY DY S S

Cooperative No No Yes Yes Yes Yes
Process
Migration

No No Yes No No No

CPU
Utilization

Less Less More More Less Less

 Process Migration
Process migration parameter provides when does a system
decide to export a process? It decides whether to create it
locally or create it on a remote processing element. The
algorithm is capable to decide that it should make changes of
load distribution during execution of process or not.

 Resource Utilization
Resource utilization include automatic load balancing A
distributed system may have unexpected number of processes
that demand more processing power. If the algorithm is
capable to utilize resources, they can be moved to under
loaded processors more efficiently

5. CONCLUSION

Although the results from the linux kernal version 2.6.11
analysis in the previous section are encouraging, there are
many open questions. Even though the improvement (cpu
performance) possible with number of cores, for some
workloads there is a limitation by the following properties of
the hardware: the high off-chip memory bandwidth, the high
cost to migrate a process, the small aggregate size of on-chip
memory, and the limited ability of the software (agents) to
control hardware caches for deleting a file. We expect future
multicores to adjust some of these properties in favor of our
time based storage compaction and BST load balancing
algorithm. Future multicore will likely have a larger ratio of

compute cycles to off-chip memory bandwidth and can
produce better results with our algorithm.

6. FUTURE ENHANCEMENTS

This paper has argued that multicore processors pose unique
free space management problems that require an agent based
software approach that utilizes the large number processors
very effectively. We also proved that lot of drastic
enhancements in the traditional garbage collector part of
operating system that optimizes for cpu cycle utilization. We
discovered that the cpu performance increases slowly with the
increase of free space. As a conclusion our new novel
approach eliminates the complexity of collecting the garbage
files in the many core systems and improved the cpu
utilization to the maximum level since we employ a new novel
agent based BST load balancing algorithm.

REFERENCES

[1] D.F.Bacon, P.Chang and V.T.rajan. A Unified theory of garbage
collection SIGPLAN Notices, Volume 39, Number 10, pages
50-68, 2004.

[2] S.M.Blackburn, R.E. Jones, K.S.Mckinley and J.E.B.Moss
Beltway. Getting around garbage collection gridlock. In
Proceedings of SIGPLAN 2002 Conference on Programming
Languages Design and Implementation, Programming Language
Design and Implementation (PLDI), Berlin, June 2002, Volume
37(5) of ACM SIGPLAN Notices, ACM Press 2002.

[3] S.M.Blackburn, R.L.Hudson, R.Morrison, J.E.B.Moss,
D.S.Munro and J.Zigman, Starting with termination: A
methodology for buildig distributed garbage collection
algorithms. In Proceedings Australasian Computer Science
Conference 2001.

[4] W.F.Brodie – Tyrrell, H. Detmold, K.E.Falkner and D.S.Munro.
Grabage Collection for Storage-Oriented Clusters. In
Conferences in Research and Practice in Information
Technology, Volume 26, pages 99-108, Dunedin, Newzealand,
2004.

[5] M.Linesey, R.Morrison, and D.S.Munro. The Doomsday
Distributed Termination Detection Protocol. In Distributed
Computing, Volume 19, pages 419-431. Springer 2006.

[6] M.C.Lowry and D.S.Munro. Safe and Complete Distributed
Garbage Collection with the Train Algorithm. In Proceedings of
International Conference on parallel and Distributed Sytems.
ICPADS’ 02, pages 651-658, Taipei, Taiwan, Dec.2012.

[7] L.Moreau, P.Dickman and R.E.Jones. Birrell’s distributed
refernce listing revisited. ACM transaction on Programming
Language System, Volume 27, Number 6, pages 1344-1395,
2005.

[8] W.Wang and C. A. Varela. Distributed garbage collection for
mobile actor systems: The pseudo root approach. Technical
Report 06-04, Dept. of Computer Science, R.P.I., Feb. 2006.
Extended Version of the GPC’06 Paper.

[9] R.Morrison, D.Balasubramsniam, R.M.Greenwood,
G.N.C.Kirby, K.Mayes, D.Munro and B.C.Warboys. A
compliant persistent architecture. Software, Practice and
Experience, Volume 30, Number4, pages 363-386, 2000.

[10] D.S.Munro and A.L.Brown. Evaluating partition selection
policies using the CMOS garbage collector. In A.Dearle,
G.Kirby and D. Sjoberg (editors), POSG ninth International
workshop on Persistent Objects Systems, pages 104-115, Lille
hammer, Norway, September 2000.

Agent Based Storage Compaction and BST Load Balancing Algorithm for Multicore Architecture 361

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

[11] S.Norcross. Deriving Distributed Garbage Collectors from
Distributed Termination Algorithm.Ph.D thesis.

[12] J.N.Zigman, A General Framework for the description and
construction of Hierarchical garbage collection algorithms. Ph.D
thesis, Australian National University, June 2004.

[13] Maurice P.Herlihy, J.Eliot B.Moss, Lock-Free Garbage
Collection for Multiprocessors, IEEE Transactions on Parallel
and Distributed Systems, Vol.3, No.3, May 1992.

[14] S.J. Norcross, R. Morrison, D.S. Munro, and H. Detmold,
"Implementing a Family of Distributed Garbage Collectors", in
26th Australasian Computer Science Conference(ACSC 2003),
Adelaide, Australia, p. 161-170 (2003)

[15] Ali M. Alakeel, “Load Balancing in Distributed Computer
Systems”, International Journal of Computer Science and
Information Security Vol. 8 No. 4 July, 2010.

[16] Dahoud Ali, Mohamed A. Belal and Moh’d Belal Zoubi, “Load
Balancing of Distributed Systems Based on Multiple Ant
Colonies Optimization” , American Journal of Applied Sciences
7 (3): 433-438,2010.

[17] G.Muneeeswari, K.L.Shunmuganathan, A Novel hard-soft
processor affinity scheduling for multicore architecture using
multiagents, European journal of Scientific Research,Vol.55,
No.3, PP 419-429, 2011.

[18] G.Muneeeswari, K.L.Shunmuganathan, Agent Based Load
Balancing Scheme using Affinity Processor Scheduling for
Multicore Architectures,WSEAS Transactions on
Computers,August 2011.

[19] G.Muneeswari, A.Sobitha Ahila, Dr.K.L.Shunmuganathan, “A
Novel Approach to Multiagent Based Scheduling for Multicore
Architecture”, GSTF journal on computing, Singapore
vol1.No.2, 2011.

[20] G.Muneeswari, Dr.K.L.Shunmuganathan, “Improving CPU
Performance and Equalizing Power Consumption for Multicore
Processors in Agent Based Process Scheduling”, International
conference on power electronics and instrumentation
engineering, Springer-LNCS, 2011.

[21] Agus Dwi Suarjaya , "A New Algorithm for Data Compression
Optimization", International Journal of Advanced Computer
Science and Applications, Vol. 3, No.8, 2012.

[22] G.Muneeswari, K.L.Shunmuganathan, "Time based agent
garbage collection algorithm for multicore architectures",
ICACCI '12 Proceedings of the International Conference on
Advances in Computing, Communications and
Informatics,2012.

[23]

